Needham, Chapter 7, Notes
G. Palmer, Oct 24,2017, 4:10 pm PDT

Notes on notation in Chapter VII, Winding Numbers and Topology

This chapter introduces the notation for winding functions. I found much of it difficult to follow.
I’m not sure why, but I think the notation has something to do with it. There are at least five flavors

of L, including L, which appears to be equivalent to or at least tightly wrapped onto the unit circle,

and there are flavors of z and w that correspond to L. and L.L and L are used for objects; L’s,
variously marked are used for transformations. There are transformations from loops to unit circles,
from unit circles to loops, and from unit circles to loops on unit circles. Both L and I are loops. The
difference that would warrant two symbols for a loop is not clear. Vasco wrote in the Forum that L
implies a limitation to real functions of a single variable and I" implies loops in the complex plane.

This is not a complete list of the notation used in Chapter 7. It is just a list of notation in the problem-
atic sections.

General Notation

C, a unit circle

L, aloop in any shape (p. 342)

L(C), deformation of C into another loop (p. 342); L = £(C) (inference)

L(z), transformation of z (a point in C) into w (a point in L) (p. 342)

L, “standardized loop on _unit circle ” (p. 342) consisting of points W; L= L (L), wheres =1
(inference)

.2:(619), a point w; a mapping from C to L .Zj(eia) =0 (p.343)

L(z), a transformation of a point w in L to a point radially closer to a point on i; L(z)=w+s(W -
w) (p.343) [Should this be L(w)?] L,(L) would be a deformation of L (inference).

®(6), the positive rotational angle between w and L(e') (p. 342)

0, angle from O to 27 (p. 342)

w, a point in a loop L [5]; £(e!), R(6) @

W, a point on unit circle with same ® as w; w = z(eie) = ¢'%0 (p. 343)

g v, ‘archetypal mapping of degree v*; g A(2) =77, “for which ®(0) = v6 (p. 343)
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I', a circle (not necessarily a unit circle) or a simple loop in general (p. 350, [10]); why I" rather than
L?

Winding Numbers and Multiplicity

a, typically a p-point or a root

p-point, the pre-image of a mapping to a point p (p. 345)

root, preimage of 0; solution to f(z) = 0 (p. 345)

n, an integer value of algebraic multiplicity or winding number; power of A = (z-a) in Taylor's series
winding number and degree, v

v(a), the winding number around an infinitesimal circle centered at a; the topological multiplicity of
a; the preimage of a zero point p of a function; sign of det[J(a)]

v[L, 0] (p. 338) "net number of revolutions of the direction of z as it traces out L once in its given
sense"

v[L, p] (p. 339), nu, the topological winding number of a loop L about a point p; obtained by travers-

ing loop by inspection or by counting intersections with ray; degree of mapping Lz "loop L of
winding number v" (p. 343); "winding number v, (p. 344)

degree, "In this context [windings] it is common to speak of degree of mapping L which produces
L, rather than of the 'winding number' of L (or L)"; "The degree of L(ie.v)"; "the archtypal map-
ping of degree v in jn(z)" (p- 343)

winding number and polynomials

v[P(I":)], If a simple loop I winds once around m roots of P(z), then v[P(I'), 0] = m (p. 345, bold-
face added)

winding number and p-points
N, If "N is the number of p-points [counted with their multiplicities] inside I', then N = v[f('), p]"
algebraic multiplicity and analytic functions

algebraic multiplicity, "root a is a zero point of algebraic multiplicity n" (p. 346); multiple copies of
root "a"; algebraic multiplicity of an analytic f can be represented as a convergent Taylor series in

the neighborhood of a nonsingular point (p. 346); found by finding power n of A = (z-a) in
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Ff(@™ (a) o . T " . . . 1.
———A" (p. 347); "we define the algebraic multiplicity of a to be n" (p. 347); algebraic multiplic-

n!

ity nis v[i(['p)], p] (348); v(a) =n, i.e. v(a) = algebraic multiplicity (p. 348);
algebraic multiplicity and continuous mappings

algebraic multiplicity, "If the algebraic multiplicity is n, then the winding numbers of the image will
also be n" (p. 347); " 'multiplicity' for a mapping h(z) that is merely continuous" (p. 348)

topological multiplicity v(a) and continuous mappings
topological multiplicity, v(a), "define the topological multiplicity of a to be v(a) = v[h(T',), p] (p-
348); notice that topological multiplicity is the multiplicity of a p-point and it is defined by the

winding number of its image; "local degree of h at a" (p. 348, footnote 3); the number of p-points
inside I counted with their topological multiplicities equals v[h(I'), p] (p. 350, (10) );

viL,p)=1,2

@ A @

v(L.p) =1

viL,p)=1,2

p- 339, paragraph 1, It is often useful to consider the winding number of a loop about a point p
other than the origin, and this is correspondingly written V(L, p). Instead of counting the revolutions
of z, we now count those of (z-p). For example, the shaded region in [1] can be defined as all the
positions of p for which \(L, p) # 0. Try shading this set for the other loops. [See above figure after
Figure [1], p. 338].
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p-343,9 1, line 2. If z moves at unit speed round C, what does the slope (including the sign) of the
graph represent?

[UNFINISHED]

Chapter 7, Notes and suggested exercises, p. 346.
p. 346, paragraph 5, If the root a of a polynomial P(z) has multiplicity n then P may be factorized as

A7), where ()(a) # 0. It follows by simple calculation [exercise] that the first (n-1) derivatives of
P vanish at a, so that a is a critical point of order at least (n-1).

Define (z —a)? = (z-a)’ = 1, where 0 is the power of A in the first summand of P,
P=A"Q(2)=(z — a)"WNz)
PO =n(z—a)"'2) + (z — )"Q’(2)

In the series PV .. P™ for each P, m in (1..n), the A”™ = (z —a)" ™™ in the first summand has the
lowest power of A. Terms with powers = 1 vanish at a. All P in {P(V .. P"~D} consist entirely of
terms that vanish at a. Since P"~V contains (z — a)! =0 in the first summand, all derivatives from
(1) up to (n-1) vanish at a. Since P“"~1 = 0, a is a critical point of order (n-1) (p. 204). The nth
derivative contains (z —a)? = 1, which does not vanish at a. Then at a,

P™ = (z - a)’Q(z) = n!(z-a)’ U(z) = n!Q(z)

which is non-zero.

Notes on Chapter 7,1V.3, p. 349. What’s topologically special about analytic functions?
v(a) for critical and non-critical points in analytic and nonanalytic functions
Analytic functions

non-critical points: +1
critical points: positive integer other than 1, but not zero

Nonanalytic functions

non-critical points: +1
critical points: 0, £1, other integer, positive or negative
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Notes from the pizza oven.

p- 353, 9 1 By following the effect of the transformation on little loops round each of the two preim-
ages, we confirm this prediction: one preimage has multiplicity + 1 while the other has multiplicity
-1.

Figure 1: Rotation and preimages
on merged layers

The outer rim of the black ring has radius 1. The brown inner disc and the black ring together consti-
tute the original pizza dough. When the pizza has been lifted and stretched out, it is pressed down
flat, resulting in two layers over the disc labeled “C”, which lies outside the unit circle. Since there
is no pizza within the outer green layer itself, the overlying layers are from the top layer with the B
disc and from the slanted sidewall arising from lifting up the inner disc and stretching a thin ring of
the pastry lying outside of the circle surrounding the inner disc. It appears from Figure 1 that the
small circles around A and B must rotate in the same direction. The preimage encircling A has
multiplicity +1. Then according to the text on p. 353, there must be a small image circle in the layer
from the sidewall that rotates in the opposite direction. This is not evident from the plot. It might be
that one has to view the rotation from outside the wall (or from below the C disc). This image circle
would also have a preimage conguent with the circle around A but with opposite orientation. But
what is the geometric rationale for saying that the preimages have opposite orientations and multiplic
ities?

Notes on Rouché’s Theorem and Brouwer’s Fixed Point Theorem (BFPT), exercises 12 (p.

372) and 15 (pp. 373-374).

Rouché’s Theorem and BFPT are needed to understand Exercise 12, which is prerequisite to Exer-
cise 15. The four topics are grouped together here.

p- 353, Rouché’s Theorem (RT)

The essentials:
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Igl < If(z)!l on a simple loop I (not <)

v[(f+g)(I), 0] = v[f(I), 0]

(The winding number of (f+g) equals the winding number of f.)
(f+g) has the same number of roots (“zeroes”) inside I as f.

p- 354, Brouwer’s Fixed Point Theorem (BFPT), a “slightly different result”

This is not a proof of BFPT, but rather a “slightly different result” in which Ig(z)! < 1 rather than
lg(z)l < 1. We switch from a simple loop I to a disc D such that Izl < 1 on D. But we set a condition:
lg(z)I < 1 for all z in D. Hence, g(z) is in D, but not on the boundary. Then, we let m(z) = g(z) - z,
and we let f(z) = - z. This assures that g(z) + f(z) # 0 on the boundary (unit circle), because If(z)l = 1
and lg(z)! < 1. Then, by Rouché’s Theorem, m(z) has the same number of roots in D as f(z). The
number of roots is 1, because f(z) = -z and v[f(C), 0] = 1. Notice that for RT, we considered the
number of roots inside a simple loop I' and for BFPT we consider the number of roots in D, which
is the disc including its boundary. The construction in the proof of the narrow result satisfies the
conditions of RT.

p. 355, line 4: “On the boundary of D ...” can be more readily understood when expanded to “For z
on the boundary of D ...”

p- 372, Exercise 12, a “slight” generalization of Rouché’s Theorem.

(1) If p(z) and q(z) are not O on ',
[' = p(2) q()(T)
(i) V[, 0] =v[pI), 0] + v[q(I),0] (1

fle) + 2 = f2)|1 + 53| = fz) H@)

As in Rouché’s Theorem, the condition is established that Ig(z)l < If(z)l on I". We can see that H is
anchored at 1, and since | %I < 1, we can see that H(z) > 0 for all zin I', so H(z) cannot wind

around zero and v[H(z), 0] = 0. Substituting f(z) for p(z) and H(z) for q(z) in (1), we obtain
Rouché’s Theorem.

(ii1) relaxes the condition on the lengths of g(z) and f(z) so that

lg(z)l < If(z)l
and suggests that “v[H(I"), O] might not be well-defined.” We are to show that if we stipulate f + g +
O on I', then v[H(I'), 0] =0,” as in (i1). This looks suspiciously like what we did in (ii). Of course, if

the winding number is not well-defined, it cannot be subtracted or added.

pp- 373-374, Exercise 15, Generalization of BFPT
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Rouché’s Theorem was generalized so it could be used to prove a more general version of BFPT.
For a proof by contradiction, we assume that there is no fixed point in some continuous mapping of
“the disc itself”, “so that m # O throughout the disc Izl < 1.”

(i) As in the discussion on p. 354, “m(z) = g(z) - z = g(z) + f(z) does not vanish on the unit circle
C” [emphasis added]. By Ex. 12 (iii) we have shown that v[m(C), 0] = 1. But if m(z) were to vanish
at any point or every point on I', then it could not make a full wind, so v[m(C), 0] =0. It is impor-
tant not to confuse v[H(z), 0] = 0 with v[m(C), 0] = 0. We want v[H(z), 0] = 0 so that v[m(C), 0] =
1. Ex. 12 (iii) established that v[H(z), 0] = 0 where Ig(z)! < If(z)| and perhaps even where m(z)
vanishes, i.e. f + g =0. Why is this problem developed on C, when the BFPT applies to the whole
disc? Perhaps that question is answered in (ii), which I do not understand.

(ii) appears to require that we show that v[m(C,), 0] =0 at r = 1, because that would create a contra-
diction with (i). In my posted answer, I showed that the winding was undefined at r = 0, but it
seemed to be 1 where O < r <= 1. In either case, I don’t see a contradiction, and I don’t see how this
would support the proof by contradiction.

End of Notes on Rouché’s Theorem and Brouwer’s Fixed Point Theorem (BFPT), exercises 12
(p.372) and 15 (pp. 373-374).

[Exercise], Chapter 7, Section VII, 1 Schwartz’s Lemma, p. 359, paragraph 1

Show that f = M, o M{.

It is given that f is an analytic function with a well-defined inverse that maps the disc to itself, but
does not leave the centre fixed, rather it moves it to c. A rigid motion M, sends c back to 0. The
composition Mo f maps the disc to itself, but leaves the centre fixed. By Schwartz’s lemma, there is

a rotation Mg =M,of.

We take M, to be an instance of the involutory Mdbius transformation M, = ;_a

1 which maps a

disc to itself and swaps O to a and a to O (p. 179). Then
M =M, of
M oMl =M " oM, of

M, o Mg = f, because M.~ =M,

This 1s what we wanted.

pp- 359-360, SS 2, Liouville’s Theorem
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There are no suggested exercises in this subsection, but when I reread it in connection with Exercise
2, Chapter 9, it struck me as a tricky section. I found it helpful to make a figure.

K £(K)

IF(p)l = | % | < max[F(z)] on K

Schwarz: Every interior point moves closer to center (or it is a rotation) (p. 358).

Then f(p) must be closer to center than p, and
IF(p)l < max[F(z) on K] = [ "V on K ] < 4,
because maxlIf(z)l occurs on the boundary, K.

[Exercise] VIII, 2 Poles and essential singularities, p. 366

The order of a pole is the order of the first nonvanishing derivative of (1/f).

P(z) = 1/sin(z)

P(z) has a pole wherever sin(z) is 0, which happens whenever z = nz,n =0,1,2,..0c0. Needham
pointed out that "P has a simple pole at each multiple of 7".

F = 1/P(z) = sin(z) vanishes at 0
F' = cos(z)

Examine the value of F' at the poles.
F'(nm) =cos(nm) = {1,-1}

The first derivative at z = nx is nonzero. Hence, the order of every one of the infinite poles is 1.
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Q(z)=cosz /7’
Q(z) has a double pole at z=0.
F=1/Q(z) = 7*/cos z

" 2zc0s z— 72 (—sin z) __ 2zcosz+z’sing .
F = (s = o e vanishes at 0

F® =2 sec(z) + 2% sec’(z) + 4 z sec(z) tan(z) + z> sec(z) tan’(2)
FO©0) =2

The first nonvanishing derivative of F has order 2, so the double pole of Q has order 2.

1
(e-1y°

R(z) =

R(z) has a pole whenever e* = 1. This happens when z = 0, so R(z) has a triple pole at zero. If z is
treated as an angle i6, then z = 0 every n2x for n =0,1,2,...c0, and the number of triple poles is
infinite.

F=(e-1)

F'=3¢%(e* — 1)* vanishes at z=0

FP =6¢e*(e*—1)+3 ¢ (¢¢ — 1)? vanishes atz=0
FO=6¢e7+18e*(ef—1)+3 € (¢ — 1)
FOW0)=6

The first nonvanishing derivative of F has order 3, so each of the infinite triples of F has order 3.

p. 366,94
gz)=e'"
le@l=e'r

I missed this problem somewhere along the path of complex number calculations, so I was puzzled
for a bit how to get from g(z) = e'/%, z = re'? to the absolute quantity. Just add an ounce of Euler.



nh.ch7.notes.nb | 11

Rewrite

1 et
r

g(z)= ez ew =T

cos @ +isinf cos ) —isinf cosf —isinf

=e r =e r =e r e r

Then

cos —isinf cos

lg)l=er le + I=er




