Notes on Needham, Chapter 10.
G. Palmer, July 20, 2018, 10 am PT

P. 450 Try doing a vector sketch of some other powers, then compare them with accurate ones done
by your computer. Also use the computer to examine the vector fields of €°, log z, and sin z.

Vector fields
[a] z2, [b] 1/z, [c] 3, [d] 1/22, [e] &%, [f] log[z], [g] sin(z)
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Flow, force, irrotational, source and loop

It has been a mystery to me how one knows that a flow or force has or does not have a source. The
information appears to be provided on these pages.

P. 453. The flow of water is described as incompressible and irrotational.

P. 454. Indicates that a vector field can be thought of as the velocity of flow and streamlines as



nh.ch10.notes.nb | 3

paths. Force fields are distinct from flows, but they are represented in the same way, so force is like
velocity. The streamlines of force fields are the lines of force. The streamlines may be rays. Flux is
flow (or force?) across a curve and orthogonal to the curve.

P. 455 The idea of flux across a loop appears to introduce the idea of a source.

S=2nr|V| V=22(1/2)

P. 473-474 (Chap. 11). A flow is sourceless in a region if all simple loops in the region have vanish-
ing flux. This must mean that the loops do not enclose a singular point.

Figure 1. Facsimile of [4b], p. 455

P. 456. We will now show geometrically that as claimed in [3], the net force at p is tangent to the
circle through A, p, and B. Consider [4b]. It is easy to see [exercise] that D will be tangent to the
circle if and only if the angles marked » and © are equal, so this is what we must demonstrate.

We have plotted Figure 1 using the equations for Vg and Vg provided on p. 455, letting S = 1. It is
necessary to use the equations in order to obtain the correct lengths of Vg and Vg, without which
the net force (D = Vg + Vg) will not be tangent ot the circle at p.

To see Needham’s thinking, we should show that



4 | nh.ch10.notes.nb

This establishes that the two shaded triangles are similar. Then ¢ = ©. Then we show that e = ©
implies that D is tangent to the circle.

Since ts is parallel to Vg by the equal angles at tsp and spA, we can write

s _ Vel
ps Vel
But
-5 (_L
Ve = 2r (E—Z)
- S (1L
Ve =1x (E—E)

which means that two sides of the triangles are proportional and the angles between the two sides of
each are equal. The shaded triangles are therefore similar, which establishes that « = ® and we have
technically completed the exercise.

Now we want to show that D must be tangent to the circle. If D is tangent, then ® + // +y =n/2. By
an apparently well known relation, if two triangles share a chord, one triangle having a vertex at the
circle origin (AOp) and the other having a vertex on the circle (ABp) (Vasco, Forum), we can write:

0=2n-2¢
Then we can write, using // for the double arc angle symbol,

e=n-(¢+/)

v =(m-0)/2

O+//+y=n/2
=n/2-/-vy
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=n/2-//-(n-0)/2
=-//+012=-//+ (2r-2¢)/2
=-//+m-¢p=-r

We have shown that « = © if D is tangent to the circle. Since we know already that « = © by the

similarity of the shaded triangles, then D must be tangent. So D is tangent if and only if the angles
marked ¢ and © are equal.

P. 457 [5] Dipole

Vectors on an ellipse have been added to the dipole.

The figure represents a vector field induced by the dipole shown in [5], p. 457 acting on an elliptical
curve I[';. As z traverses [’y in a counter-clockwise direction, the vector arrow rotates continously in
the counter-clockwise direction about an imagined zero point at the vector base, resulting in index
I[S] =+2. The four thin black circles in each dipole and the central vertical line are streamlines
intersected by z at 16 arbitrary points on I';. Two of these circles are very close together between
directed circles 4 and 5 on both sides. The outer two lie between directed circles 5 and 6. Note that
the vertical line can also be thought of as a circle.

Test of Poincaré-Hopf Theorem, p. 462
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[b .

In the two views [a] and [b] of the sphere above, groups of circles are placed on the sphere represent-
ing four vortices (right, top, left, bottom) each of which is analogous to that in the second plot, top
row, of [5], p. 457. Each of the vortices on the sphere has a singular point at the center. Viewing
from the outside of the sphere, let z traverse counterclockwise on any one of the streamlines in a
single vortex to produce a vector field with index 7[S;] = + 1, no matter the direction of the stream-
lines. The indices of the four vortices sum to +4. This appears to contradict the Poincaré-Hopf
theorem, which states that the sum of the indices of any vector field on the surface of a topological
sphere is 2. But in fact, we must also consider the indices of the remaining two singular points. On

p. 463, Needham wrote “sum the indices of the singular points.”

Also visible is a simple crosspoint S where two great circles (dashed lines) outside the vortices
intersect to form a saddle on the sphere analogous to the first plot in [5], p. 457. The pattern is
symmetrical front to back. That is, the view on the back side of the sphere is identical to that on the
front, so there are two crosspoints, i.e. two more singular points. Let z traverse the red circle in the
counterclockwise direction. Draw vectors tangent to the gray directed streamlines of the vortices at
the 8 points where they are intersected by I';. As z enters a new vortex, the rotation of each vector
with respect to the preceding vector is always negative. When we take into account the fact that the
gray circles are just samples from an infinite number of directed streamlines, and the fact that the
circular streamlines can be distorted (p. 464, last q) to look more like the streamlines in the simple
crosspoint in [5], we conclude that a complete traversal of z produces a complete vector rotation of
-1 just as the simple crosspoint does in [5]. Since there are two saddle points, the sum of indices for
them is -2. Now all the indices can be summed as on p. 463, top.

I (vortices) + I (saddles) =+4 -2 =2
This agrees with the Poincaré-Hopf Theorem.

Needham says “Intuitively, we may picture such a vector field as the velocity of a fluid that is
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flowing over S” (p. 463). There seem to be no constraints on the types of flow that might be
induced. In some cases, such as [11a], the vortices could be imagined as created by a drenched
sphere spinning on one or more axes. In the present example, one can think of four paint mixers of
the spinning paddle type applied to create the four vortices. What would create the dipole in [11b]?
It appears to be a “point dipole” in which the distance between singular points approaches 0.
Wikipedia defines a point electric dipole as follows: “A point (electric) dipole is the limit obtained
by letting the separation tend to 0 while keeping the dipole moment fixed.” An electron has a mag-
netic dipole, so it might serve as a good example of a point dipole.

https://en.wikipedia.org/wiki/Dipole
https://upload.wikimedia.org/wikipedia/commons/thumb/8/81/VFPt_dipole point.svg/250px-
VFPt_dipole point.svg.png

P. 458, bottom, graphs of two functions
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The discussion on pp. 458, bottom, suggests that the root appears as a parabola and the pole appears
as a vertical asymptote and that both functions in x look something like 1/z, as in [c]. The plots of
vector fields are explained with reference to winding and indexes. There is no indication of how one
might infer the locations of roots and poles from the plots of vector fields. Nothing in [d] obviously

reveals that the root is 1. In [e], one can see that the vectors expand rapidly suggesting that the pole
is -2.



